Similar Tracks
||Lecture#13||GCD(a,b)=ax+by where a,b∈Z,not both are zero||Number Theory||@PRECIOUS LINES
Prof. Latif Sajid
||Lecture#44||If p is a prime and p|a₁a₂a₃...aₙ then p|aₓ where 1≤x≤n||Prof.Latif Sajid||
Prof. Latif Sajid
||Lecture#37||If a and b are non zero then gcd(a,b)lcm(a,b)=ab||Prof.Latif Sajid||
Prof. Latif Sajid
Quantification || ||CUET || PG || Logic || Quantifiers || Predicate Logic || Solved Exercise||
Darshan_stanzin
◎ Quick Chakra Tuneup | 3 Minutes Per Chakra | Chakra Healing | Tuned Tibetan Bowls Meditation
Meditative Mind
||Lecture#41||Solve the linear diophantine equation 123x+360y=99||Prof.Latif Sajid||
Prof. Latif Sajid
||Lecture#40||Solve the linear diophantine equation 172x+20y=1000||@PRECIOUS LINES ||
Prof. Latif Sajid
||Lecture#35||Common multiples||Least common multiple||Examples||Prof.Latif Sajid||
Prof. Latif Sajid