ML Lecture 3-1: Gradient Descent Share: Download MP3 Similar Tracks ML Lecture 4: Classification Hung-yi Lee Gradient Descent, Step-by-Step StatQuest with Josh Starmer ML Lecture 1: Regression - Case Study Hung-yi Lee 3.1 Intro to Gradient and Subgradient Descent Constantine Caramanis Gradient descent, how neural networks learn | DL2 3Blue1Brown The Most Important Algorithm in Machine Learning Artem Kirsanov 【生成式AI時代下的機器學習(2025)】第二講:一堂課搞懂 AI Agent 的原理 (AI如何透過經驗調整行為、使用工具和做計劃) Hung-yi Lee 1. Introduction to the Human Brain MIT OpenCourseWare ML Lecture 2: Where does the error come from? Hung-yi Lee Deep Learning Theory 2-1: When Gradient is Zero Hung-yi Lee Lecture 11 - Introduction to Neural Networks | Stanford CS229: Machine Learning (Autumn 2018) Stanford Online Gradient Boost Part 1 (of 4): Regression Main Ideas StatQuest with Josh Starmer ML Lecture 6: Brief Introduction of Deep Learning Hung-yi Lee Locally Weighted & Logistic Regression | Stanford CS229: Machine Learning - Lecture 3 (Autumn 2018) Stanford Online ML Lecture 7: Backpropagation Hung-yi Lee ML Lecture 9-1: Tips for Training DNN Hung-yi Lee 【漫士科普】90分钟深度!一口气看明白人工智能和神经网络#人工智能 #神经网络 漫士沉思录 ML Lecture 22: Ensemble Hung-yi Lee Backpropagation Details Pt. 1: Optimizing 3 parameters simultaneously. StatQuest with Josh Starmer 5. Stochastic Processes I MIT OpenCourseWare