35. Finding Clusters in Graphs Share: Download MP3 Similar Tracks Lecture 36: Alan Edelman and Julia Language MIT OpenCourseWare Steve Butler - A short course in Spectral Graph Theory GSCC 2021 Stanford CS229: Machine Learning | Summer 2019 | Lecture 16 - K-means, GMM, and EM Stanford Online 6. Singular Value Decomposition (SVD) MIT OpenCourseWare 22. Gradient Descent: Downhill to a Minimum MIT OpenCourseWare Lecture 7. Graph partitioning algorithms. Leonid Zhukov DTU Ørsted Lecture with Professor Steven Eppinger DTUdk Lecture 22: Unsupervised Learning on Graphs Machine Learning CMU 10-605 Fall 2016 Graph Sampling for GNNs: A Tutorial Mashaan Alshammari MIT 6.S191: Reinforcement Learning Alexander Amini Daniel Spielman “Miracles of Algebraic Graph Theory” Joint Mathematics Meetings 23. Accelerating Gradient Descent (Use Momentum) MIT OpenCourseWare Introduction to Graph Theory: A Computer Science Perspective Reducible On Laplacian Eigenmaps for Dimensionality Reduction - Juan Orduz PyData Lecture 8: Norms of Vectors and Matrices MIT OpenCourseWare Stochastic block models and probabilistic reductions - Emmanuel Abbe Institute for Advanced Study Discovering Communities: Modularity & Louvain #SoMe3 Splience An Introduction to Graph Neural Networks: Models and Applications Microsoft Research Graph Clustering Algorithms (September 28, 2017) GraphXD: Graphs Across Domains 25. Stochastic Gradient Descent MIT OpenCourseWare