Panel Discussion: Open Questions in Theory of Learning Share: Download MP3 Similar Tracks Aligning deep networks with human vision will require novel neural architectures, data diets and ... MITCBMM Invariance and equivariance in brains and machines MITCBMM MIT Robotics - Stefano Stramigioli - Bridging Robotics with Advanced Physics MIT Robotics Panel Discussion: Open Problems in the Theory of Deep Learning MITCBMM Hippocampal memory, cognition, and the role of sleep - part 1 MITCBMM Harvard CS50’s Artificial Intelligence with Python – Full University Course freeCodeCamp.org Optimal Protocols for Studying & Learning Andrew Huberman CBMM10 Panel: Language and Thought MITCBMM Learning to Reason, Insights from Language Modeling MITCBMM CBMM10 Panel: Research on Intelligence in the Age of AI MITCBMM How AI Could Save (Not Destroy) Education | Sal Khan | TED TED Language Models as World Models MITCBMM Building a Life - Howard H. Stevenson (2013) Harvard Business School Prof. Judy Fan: Cognitive Tools for Making the Invisible Visible MIT Quest for Intelligence MIT 6.S191: Reinforcement Learning Alexander Amini 2025 MIT Integration Bee - Regular Season MIT Integration Bee Making Milk: Mongolia’s Unique Role in Dairy’s History Peabody Museum of Archaeology & Ethnology MIT 6.S191: Convolutional Neural Networks Alexander Amini 1. Introduction to the Human Brain MIT OpenCourseWare MIT Introduction to Deep Learning | 6.S191 Alexander Amini